Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Heliyon ; 10(8): e29017, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644830

ABSTRACT

The programmed cell death pathways of apoptosis are important in mammalian cellular protection from infections. The activation of these pathways depends on the presence of membrane receptors that bind bacterial components to activate the transduction mechanism. In addition to bacteria, these mechanisms can be activated by outer membrane vesicles (OMVs). OMVs are spherical vesicles of 20-250 nm diameter, constitutively released by Gram-negative bacteria. They contain several bacterial determinants including proteins, DNA/RNA and proteins, that activate different cellular processes in host cells. This study focused on Klebsiella pneumoniae-OMVs in activating death mechanisms in human bronchial epithelial cells (BEAS-2B). Characterization of purified OMVs was achieved by scanning electron microscopy, nanoparticle tracking analysis and protein profiling. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while apoptotic induction was measured by flow cytometry and confirmed by western blotting. The OMVs produced showed a spherical morphology, with a diameter of 137.2 ± 41 nm and a vesicular density of 7.8 × 109 particles/mL Exposure of cell monolayers to 50 µg of K. pneumoniae-OMV for 14 h resulted in approximately 25 % cytotoxicity and 41.15-41.14 % of cells undergoing early and late apoptosis. Fluorescence microscopy revealed reduced cellular density, the presence of apoptotic bodies, chromatin condensation, and nuclear membrane blebbing in residual cells. Activation of caspases -3 and -9 and dysregulation of BAX, BIM and Bcl-xL indicated the activation of mitochondria-dependent apoptosis. Furthermore, a decrease in the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase involved endoplasmic reticulum stress with the potential formation of reactive oxygen species. These findings provide evidence for the role of OMVs in apoptosis and involvement in the pathogenesis of K. pneumoniae infections.

2.
Front Immunol ; 15: 1373435, 2024.
Article in English | MEDLINE | ID: mdl-38601151

ABSTRACT

Introduction: The involvement of endocannabinoid system (ECS) in the inflammatory cascade, and the ability of phytocannabinoids, endocannabinoids and their synthetic analogues to modulate it has become an interesting research area for new therapeutic approaches in inflammatory skin diseases. Cannabidiol (CBD) appears to be the most promising among phytocannabinoids, due to the lack of psychotropic effects and low toxicity profile. Its anti-inflammatory action has been highlighted in different preclinical models, ranging from experimental colitis to arthritis and neuroinflammation. Our aim was to evaluate CBD immune-modulatory effects in peripheral blood mononuclear cells (PBMC) of psoriasis individuals with particular attention to both innate and adaptative immune arms. Methods: We performed in vitro immune functional experiments to analyze CBD action on various immune cells active in psoriatic lesions. Results: The results showed that CBD produced a shift from Th1 to Th2 response, while boosting cytotoxic activity of Natural Killer (NK) cells. Furthermore, it also exerted a potent action on monocyte differentiation as, after CBD treatment, monocytes from psoriatic individuals were unable to migrate in response to inflammatory stimuli and to fully differentiate into mature dendritic cells. Finally, a M2 skewing of monocyte-derived macrophages by CBD also contributed to the fine tuning of the magnitude of immune responses. Conclusions: These data uncover new potential immunomodulatory properties of this cannabinoid suggesting a possible therapeutic action in the treatment of multiple inflammatory skin diseases.


Subject(s)
Cannabidiol , Cannabinoids , Psoriasis , Humans , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Leukocytes, Mononuclear , Psoriasis/drug therapy , Endocannabinoids
3.
Immun Ageing ; 21(1): 19, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38468336

ABSTRACT

BACKGROUND: Increased levels of pro-inflammatory proteins in plasma can be detected in older individuals and associate with the so called chronic low-grade inflammation, which contributes to a faster progression of aged-related cardiovascular (CV) diseases, including frailty, neurodegeneration, gastro-intestinal diseases and disorders reflected by alterations in the composition of gut microbiota. However, successful genetic programme of long-living individuals alters the trajectory of the ageing process, by promoting an efficient immune response that can counterbalance deleterious effects of inflammation and the CV complications. This is the case of BPIFB4 gene in which, homozygosity for a four single-nucleotide polymorphism (SNP) haplotype, the Longevity-Associated Variant (LAV) correlates with prolonged health span and reduced risk of CV complications and inflammation. The relation between LAV-BPIFB4 and inflammation has been proven in different experimental models, here we hypothesized that also human homozygous carriers of LAV-BPIFB4 gene may experience a lower inflammatory burden as detected by plasma proteomics that could explain their favourable CV risk trajectory over time. Moreover, we explored the therapeutic effects of LAV-BPIFB4 in inflammatory disease and monolayer model of intestinal barrier. RESULTS: We used high-throughput proteomic approach to explore the profiles of circulating proteins from 591 baseline participants selected from the PLIC cohort according to the BPIFB4 genotype to identify the signatures and differences of BPIFB4 genotypes useful for health and disease management. The observational analysis identified a panel of differentially expressed circulating proteins between the homozygous LAV-BPIFB4 carriers and the other alternative BPIFB4 genotypes highlighting in the latter ones a higher grade of immune-inflammatory markers. Moreover, in vitro studies performed on intestinal epithelial organs from inflammatory bowel disease (IBD) patients and monolayer model of intestinal barrier demonstrated the benefit of LAV-BPIFB4 treatment. CONCLUSIONS: Homozygosity for LAV-BPIFB4 results in the attenuation of inflammation in PLIC cohort and IBD patients providing preliminary evidences for its therapeutic use in inflammatory disorders that need to be further characterized and confirmed by independent studies.

4.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958593

ABSTRACT

Antibodies are the macromolecules of choice to ensure specific recognition of biomarkers in biological assays. However, they present a range of shortfalls including a relatively high production cost and limited tissue penetration. Peptides are relatively small molecules able to reproduce sequences of highly specific paratopes and, although they have less biospecificity than antibodies, they offer advantages like ease of synthesis, modifications of their amino acid sequences and tagging with fluorophores and other molecules required for detection. This work presents a strategy to design peptide sequences able to recognize the CD44 hyaluronic acid receptor present in the plasmalemma of a range of cells including human bone marrow stromal mesenchymal cells. The protocol of identification of the optimal amino acid sequence was based on the combination of rational design and in silico methodologies. This protocol led to the identification of two peptide sequences which were synthesized and tested on human bone marrow mesenchymal stromal cells (hBM-MSCs) for their ability to ensure specific binding to the CD44 receptor. Of the two peptides, one binds CD44 with sensitivity and selectivity, thus proving its potential to be used as a suitable alternative to this antibody in conventional immunostaining. In the context of regenerative medicine, the availability of this peptide could be harnessed to functionalize tissue engineering scaffolds to anchor stem cells as well as to be integrated into systems such as cell sorters to efficiently isolate MSCs from biological samples including various cell subpopulations. The data here reported can represent a model for developing peptide sequences able to recognize hBM-MSCs and other types of cells and for their integration in a range of biomedical applications.


Subject(s)
Mesenchymal Stem Cells , Humans , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Peptides/metabolism , Bone Marrow Cells , Cells, Cultured
5.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047437

ABSTRACT

The homozygous genotype of the Longevity-Associated Variant (LAV) in Bactericidal/Permeability-Increasing Fold-Containing Family B member 4 (BPIFB4) is enriched in long-living individuals of three independent populations and its genetic transfer in C57BL/6J mice showed a delay in frailty progression and improvement of several biomarkers of aging and multiple aspects of health. The C57BL/6J strain is a suitable model for studying therapies aimed at extending healthy aging and longevity due to its relatively short lifespan and the availability of aging biomarkers. Epigenetic clocks based on DNA methylation profiles are reliable molecular biomarkers of aging, while frailty measurement tools are used to evaluate overall health during aging. In this study, we show that the systemic gene transfer of LAV-BPIFB4 in aged C57BL/6J mice was associated with a significant reduction in the epigenetic clock-based biological age, as measured by a three CpG clock method. Furthermore, LAV-BPIFB4 gene transfer resulted in an improvement of the Vitality Score with a reduction in the Frailty Index. These findings further support the use of LAV-BPIFB4 gene therapy to induce beneficial effects on epigenetic mechanisms associated with aging and frailty in aged mice, with potential implications for future therapies to prevent frailty in humans.


Subject(s)
Frailty , Longevity , Humans , Mice , Animals , Aged , Longevity/genetics , Frailty/genetics , Mice, Inbred C57BL , Epigenesis, Genetic , Biomarkers , Genetic Therapy , DNA Methylation , Intercellular Signaling Peptides and Proteins/genetics
7.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902151

ABSTRACT

SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte-platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.


Subject(s)
Blood Platelets , COVID-19 , Humans , Blood Platelets/metabolism , SARS-CoV-2 , COVID-19/metabolism , Megakaryocytes/metabolism , Cell Line
8.
Nutrients ; 15(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36615875

ABSTRACT

Longevity, as a complex life-history trait, shares an ontogenetic relationship with other quantitative traits, such as epigenetic and environmental factors. Therefore, it is important to identify environmental factors that may modify the epigenome to establish healthy aging. This study explored the association between tap drinking water and longevity in Cilento, Italy, to understand whether trace elements in local drinking water may have an influence on old, nonagenarian, and centenarian people and promote their health and longevity. Data on population and water sources were collected through the National Demographic Statistics, the Cilento Municipal Archives, and the Cilento Integrated Water Service. Ordinary least squares (OLS) regression and a geographically weight regression (GWR) model were used to study the spatial relationship between the explanatory and outcome variables of longevity. The results of the study showed that the prevalence of longevity is concentrated in the central, northern and southeastern areas of the territory and that some trace elements present in tap water may contribute to local longevity in Cilento. Specifically, all Cilento municipalities had alkaline tap water, and the municipalities with the highest longevity concentrations had higher alkalinity levels than the other municipalities, soft to medium-hard water hardness, an amount of total dissolved solids equivalent to the level of excellent water, lower amounts of sodium, adequate iron concentration, and adequate dietary intake of manganese per day.


Subject(s)
Drinking Water , Trace Elements , Aged, 80 and over , Humans , Longevity , Drinking Water/analysis , Trace Elements/analysis , Nonagenarians , Centenarians , Italy/epidemiology
9.
Med Sci (Basel) ; 12(1)2023 12 28.
Article in English | MEDLINE | ID: mdl-38249078

ABSTRACT

Sleep is essential for overall health, yet various sleep disorders disrupt normal sleep patterns, affecting duration, quality, and timing. This pilot study investigate the impact of a food supplement (SPINOFF®) on both sleep quality and mental well-being in 41 participants (mean age: 45.3 years). Initial assessments revealed sleep disturbances (Pittsburgh Sleep Quality Index-PSQ-mean score: 8.2) and insomnia symptoms (Insomnia Severity Index-ISI- mean score: 12.7). Mental health assessments showed psychological distress (Dass-21 Depression mean score: 4.2, Anxiety mean score: 6.9, Stress mean score: 11.6, Total mean score: 22.7). This study assessed sleep continuity using Awakenings per Night (ApN) via a smartwatch (HELO HEALTH®) and conducted the study in two phases: baseline (T0) and after 30 days of treatment (T1) (Phase A). No placebo-control was used in this study. After 30 days (Phase B), 21 patients were selected for reassessment. Eleven continued treatment for another 30 days (T2), while ten discontinued. Following the intervention, we observed remarkable improvements in sleep quality and mental distress. The SPINOFF® supplement significantly reduced the PSQI scores (22.4%), indicating enhanced sleep quality. Additionally, there was a 19.6% decrease in ISI scores, demonstrating a reduction in insomnia symptoms. Moreover, overall psychological distress decreased by 19.5% signifying improved psychological well-being. In the second phase, participants who continued treatment experienced more substantial improvements, with a mean decrease of 0.8 points in PSQI scores (±0.9) and a mean decrease of 0.9 points in ISI scores. Our findings suggest that the SPINOFF® supplement has the potential to effectively address both sleep disturbances and psychological distress in our study population.


Subject(s)
Crataegus , Melatonin , Sleep Initiation and Maintenance Disorders , Humans , Middle Aged , Melatonin/therapeutic use , Tilia , Sleep Quality , Thiamine , Pilot Projects , Sleep Initiation and Maintenance Disorders/drug therapy
10.
Int J Mol Sci ; 23(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36499641

ABSTRACT

Huntington's disease (HD) is caused by the production of mutant Huntingtin (mHTT), characterized by long polyglutamine repeats with toxic effects. There are currently no clinically validated therapeutic agents that slow or halt HD progression, resulting in a significant clinical unmet need. The striatum-derived STHdh cell line, generated from mHTT knock-in mouse embryos (STHdhQ111/Q111), represents a useful model to study mechanisms behind pathogenesis of HD and to investigate potential new therapeutic targets. Indeed, these cells show susceptibility to nucleolar stress, activated DNA damage response and apoptotic signals, and elevated levels of H3K9me3 that all together concur in the progressive HD pathogenesis. We have previously shown that the adeno-associated viral vector-mediated delivery of the longevity-associated variant (LAV) of BPIFB4 prevents HD progression in a mouse model of HD. Here, we show that LAV-BPIFB4 stably infected in STHdhQ111/Q111 cells reduces (i) nucleolar stress and DNA damage through the improvement of DNA repair machinery, (ii) apoptosis, through the inhibition of the caspase 3 death signaling, and (iii) the levels of H3K9me3, by accelerating the histone clearance, via the ubiquitin-proteasome pathway. These findings pave the way to propose LAV-BPIFB4 as a promising target for innovative therapeutic strategies in HD.


Subject(s)
Huntington Disease , Animals , Mice , Apoptosis/genetics , Corpus Striatum/metabolism , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Neostriatum/metabolism , Neuroprotection/genetics , Genetic Variation
11.
Nutrients ; 14(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36079922

ABSTRACT

Longevity is rightly considered one of the greatest achievements of modern society. Biomedical research has shown that aging is the major risk factor for many diseases, so to find the right answers to aging it is necessary to identify factors that can positively influence longevity. This study investigated the clinical status, nutritional behavior, lifestyle, and social and community determinants of the well-being of young older adults and nonagenarians/centenarians in Salerno and province through the judgment of their physicians. Data were collected through an online survey. Multivariate Poisson and logistic regression models were used to calculate significant predictors of the outcomes of interest. The interesting finding was that cardiovascular disease was a risk factor for young older adults, while it was a protective factor for nonagenarians/centenarians, meaning that as age increased, heart problems tended to decrease. Certain foods were found to be a significant protective factor for both young older adult and nonagenarian-centenarian patients. In addition, psychosomatic disorders were found to be determinant for the young older adults, while depression was a risk factor for the nonagenarians/centenarians because they were not always gratified by their long lives and often felt like a burden on the family. The protective significant variable among the determinants of community well-being for both young older adults and nonagenarians/centenarians was the retention of honorary achievement. Based on our results, we are able to support the hypothesis of a difference between the young older adults and the nonagenarians/centenarians in clinical status, nutritional behaviors, lifestyle, and determinants of community well-being. However, societies need more social and educational programs that are able to build "a new idea of old age" by improving and supporting the young older adults and the nonagenarians/centenarians, with the goal of intergenerational solidarity, well-being, and social inclusion, as well as preventive interventions on lifestyles and nutrition, which will allow us to provide a new key to understanding aging.


Subject(s)
Nutritional Status , Physicians , Aged , Aged, 80 and over , Centenarians , Cross-Sectional Studies , Humans , Life Style , Nonagenarians
12.
J Pers Med ; 12(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35887555

ABSTRACT

In the ongoing global COVID-19 pandemic, male sex is a risk factor for severe disease and death, and the reasons for these clinical discrepancies are largely unknown. The aim of this work is to study the influence of sex on the course of infection and the differences in prognostic markers between genders in COVID-19 patients. Our cohort consisted of 64 adult patients (n = 34 men and n = 30 women) with PCR-proven SARS-CoV-2 infection. Further, a group of patients was characterized by a different severity degree (n = 8 high- and n = 8 low-grade individuals for both male and female patients). As expected, the serum concentrations of LDH, fibrinogen, CRP, and leucocyte count in men were significantly higher than in females. When serum concentrations of the inflammatory cytokines, including IL-6, IL-2, IP-10 and IL-4 and chemokines like MCP-1, were measured with multiplex ELISA, no significant differences between male and female patients were found. In COVID-19 patients, we recently attributed a new prognostic value to BPIFB4, a natural defensin against dysregulation of the immune responses. Here, we clarify that BPIFB4 is inversely related to the disease degree in men but not in women. Indeed, higher levels of BPIFB4 characterized low-grade male patients compared to high-grade ones. On the contrary, no significant difference was reported between low-grade female patients and high-grade ones. In conclusion, the identification of BPIFB4 as a biomarker of mild/moderate disease and its sex-specific activity would open an interesting field for research to underpin gender-related susceptibility to the disease.

13.
Eur J Med Chem ; 237: 114400, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35489223

ABSTRACT

Alzheimer's disease (AD), is the most common neurodegenerative disorder of the aging population resulting in progressive cognitive and functional decline. Accumulation of amyloid plaques around neuronal cells is considered a critical pathogenetic event and, in most cases, a hallmark of the pathology. In the attempt to identify anti-AD drug candidates, hundreds of molecules targeting Aß peptides have been screened. Peptide molecules have been widely explored, appreciating chemical stability, biocompatibility, and low production cost. More recently, many anti-Aß(1-42) monoclonal antibodies have been developed, given the excellent potential of immunotherapy for treating or preventing AD. Antibodies are versatile ligands that bind a large variety of molecules with high affinity and specificity; however, their extensive therapeutic application is complex and requires huge economic investments. Novel approaches to identify alternative antibody formats are considered with great interest. In this context, taking advantage of the favorable peptide properties and the availability of Aß-antibodies structural data, we followed an innovative research approach to identify short peptide sequences on the model of the binding sites of Aß(1-42)/antibodies. WAibH and SYSTPGK were designed as mimics of solanezumab and aducanumab, respectively. Circular dichroism and nuclear magnetic resonance analysis reveal that the antibody-derived peptides interact with Aß(1-42) in the soluble monomeric form. Moreover, AFM microscopy imaging shows that WAibH and SYSTPGK are capable of controlling the Aß(1-42) aggregation. The strategy to identify WAibH and SYSTPGK is innovative and can be widely applied for new anti-Aß antibody mimicking peptides.


Subject(s)
Amyloid beta-Peptides , Antibodies , Alzheimer Disease/metabolism , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Amyloidosis , Antibodies/chemistry , Humans , Ligands , Peptide Fragments/chemistry
14.
J Clin Invest ; 132(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35104805

ABSTRACT

Sortilin has been positively correlated with vascular disorders in humans. No study has yet evaluated the possible direct effect of sortilin on vascular function. We used pharmacological and genetic approaches coupled with study of murine and human samples to unravel the mechanisms recruited by sortilin in the vascular system. Sortilin induced endothelial dysfunction of mesenteric arteries through NADPH oxidase 2 (NOX2) isoform activation, dysfunction that was prevented by knockdown of acid sphingomyelinase (ASMase) or sphingosine kinase 1. In vivo, recombinant sortilin administration induced arterial hypertension in WT mice. In contrast, genetic deletion of sphingosine-1-phosphate receptor 3 (S1P3) and gp91phox/NOX2 resulted in preservation of endothelial function and blood pressure homeostasis after 14 days of systemic sortilin administration. Translating these research findings into the clinical setting, we detected elevated sortilin levels in hypertensive patients with endothelial dysfunction. Furthermore, in a population-based cohort of 270 subjects, we showed increased plasma ASMase activity and increased plasma levels of sortilin, S1P, and soluble NOX2-derived peptide (sNOX2-dp) in hypertensive subjects, and the increase was more pronounced in hypertensive subjects with uncontrolled blood pressure. Our studies reveal what we believe is a previously unrecognized role of sortilin in the impairment of vascular function and in blood pressure homeostasis and suggest the potential of sortilin and its mediators as biomarkers for the prediction of vascular dysfunction and high blood pressure.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Endothelium, Vascular/metabolism , Hypertension/metabolism , Lysophospholipids/metabolism , Signal Transduction , Sphingomyelin Phosphodiesterase/metabolism , Sphingosine/analogs & derivatives , Adaptor Proteins, Vesicular Transport/genetics , Animals , Endothelium, Vascular/injuries , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hypertension/genetics , Hypertension/physiopathology , Lysophospholipids/genetics , Mice , Mice, Knockout , Sphingomyelin Phosphodiesterase/genetics , Sphingosine/genetics , Sphingosine/metabolism
15.
Cells ; 11(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-35053408

ABSTRACT

Glioblastoma (GBM) is the most common primary brain cancer with the median age at diagnosis around 64 years, thus pointing to aging as an important risk factor. Indeed, aging, by increasing the senescence burden, is configured as a negative prognostic factor for GBM stage. Furthermore, several anti-GBM therapies exist, such as temozolomide (TMZ) and etoposide (ETP), that unfortunately trigger senescence and the secretion of proinflammatory senescence-associated secretory phenotype (SASP) factors that are responsible for the improper burst of (i) tumorigenesis, (ii) cancer metastasis, (iii) immunosuppression, and (iv) tissue dysfunction. Thus, adjuvant therapies that limit senescence are urgently needed. The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) gene previously demonstrated a modulatory activity in restoring age-related immune dysfunction and in balancing the low-grade inflammatory status of elderly people. Based on the above findings, we tested LAV-BPIFB4 senotherapeutic effects on senescent glioblastoma U87-MG cells and on T cells from GBM patients. We interrogated SA-ß-gal and HLA-E senescence markers, SASP factors, and proliferation and apoptosis assays. The results highlighted a LAV-BPIFB4 remodeling of the senescent phenotype of GBM cells, enhancement of their sensitivity to temozolomide and a selective reduction of the T cells' senescence from GBM patients. Overall, these findings candidate LAV-BPIFB4 as an adjuvant therapy for GBM.


Subject(s)
Antineoplastic Agents/therapeutic use , Cellular Senescence/genetics , Glioma/blood , Glioma/genetics , Intercellular Signaling Peptides and Proteins/genetics , Longevity , Lymphocytes/metabolism , Mutation/genetics , Cell Line, Tumor , Cellular Senescence/drug effects , Cellular Senescence/immunology , Cytokines/metabolism , Glioma/drug therapy , Humans , Longevity/drug effects , Lymphocytes/drug effects , Phenotype , Recombinant Proteins/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use , Treatment Outcome
16.
Cell Death Dis ; 13(1): 86, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087020

ABSTRACT

As we age, our body experiences chronic, systemic inflammation contributing to the morbidity and mortality of the elderly. The senescent immune system has been described to have a causal role in driving systemic aging and therefore may represent a key therapeutic target to prevent pathological consequences associated with aging and extend a healthy lifespan. Previous studies from our group associated a polymorphic haplotype variant in the BPIFB4 gene (LAV-BPIFB4) with exceptional longevity. Transfer of the LAV-BPIFB4 in preclinical models halted the progression of cardiovascular diseases (CVDs) and frailty by counterbalancing chronic inflammation. In the present study, we aimed to delineate the action of systemic adeno-associated viral vector-mediated LAV-BPIFB4 gene transfer (AAV-LAV-BPIFB4) on the deleterious age-related changes of the immune system and thereby the senescence-associated events occurring in C57BL/6J mice aged 26 months. Our in vivo data showed that 26-months-old mice had a higher frequency of CD45+SA-beta Gal+ immune cells in peripheral blood than young (4-months-old) C57BL/6J mice. Notably, AAV-LAV-BPIFB4 gene transfer in aged mice reduced the pool of peripheral immunosenescent cells that were shown to be enriched in the spleen. In addition, the proper tuning of the immune secretory phenotype (IL1ßlow, IL6low, IL10high) associated with a significant reduction in SA-beta Gal-positive area of aorta from AAV-LAV treated mice. At the functional level, the reduction of senescence-associated inflammation ensured sustained NAD+ levels in the plasma of AAV-LAV-BPIFB4 old mice by preventing the NADase CD38 increase in F4/80+ tissue-resident macrophages and Ly6Chigh pro-inflammatory monocytes of the spleen and bone marrow. Finally, to validate the clinical implication of our findings, we showed that Long-living-individuals (LLIs, >95 years), which delay CVDs onset, especially if LAV-carriers, were characterized by high NAD+ levels. In conclusion, the new senotherapeutic action of LAV-BPIFB4 may offer a valuable therapeutic tool to control aging and reduce the burden of its pathophysiological disorders, such as CVDs.


Subject(s)
Cardiovascular Diseases , Genetic Therapy , Immune System , Intercellular Signaling Peptides and Proteins , Longevity , Animals , Cardiovascular Diseases/therapy , Inflammation , Intercellular Signaling Peptides and Proteins/genetics , Macrophages , Mice , Mice, Inbred C57BL , NAD , Phosphoproteins/genetics
17.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34639203

ABSTRACT

In severe muscle injury, skeletal muscle tissue structure and functionality can be repaired through the involvement of several cell types, such as muscle stem cells, and innate immune responses. However, the exact mechanisms behind muscle tissue regeneration, homeostasis, and plasticity are still under investigation, and the discovery of pathways and cell types involved in muscle repair can open the way for novel therapeutic approaches, such as cell-based therapies involving stem cells and peripheral blood mononucleate cells. Indeed, peripheral cell infusions are a new therapy for muscle healing, likely because autologous peripheral blood infusion at the site of injury might enhance innate immune responses, especially those driven by macrophages. In this review, we summarize current knowledge on functions of stem cells and macrophages in skeletal muscle repairs and their roles as components of a promising cell-based therapies for muscle repair and regeneration.


Subject(s)
Macrophages/cytology , Muscle, Skeletal/cytology , Muscular Diseases/therapy , Regenerative Medicine , Stem Cells/cytology , Animals , Humans , Immunity, Innate , Macrophages/physiology , Muscle, Skeletal/physiology , Stem Cells/physiology
18.
J Gerontol A Biol Sci Med Sci ; 76(10): 1775-1783, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34396395

ABSTRACT

Aging and comorbidities make individuals at greatest risk of COVID-19 serious illness and mortality due to senescence-related events and deleterious inflammation. Long-living individuals (LLIs) are less susceptible to inflammation and develop more resiliency to COVID-19. As demonstrated, LLIs are characterized by high circulating levels of BPIFB4, a protein involved in homeostatic response to inflammatory stimuli. Also, LLIs show enrichment of homozygous genotype for the minor alleles of a 4 missense single-nucleotide polymorphism haplotype (longevity-associated variant [LAV]) in BPIFB4, able to counteract progression of diseases in animal models. Thus, the present study was designed to assess the presence and significance of BPIFB4 level in COVID-19 patients and the potential therapeutic use of LAV-BPIFB4 in fighting COVID-19. BPIFB4 plasma concentration was found significantly higher in LLIs compared to old healthy controls while it significantly decreased in 64 COVID-19 patients. Further, the drop in BPIFB4 values correlated with disease severity. Accordingly to the LAV-BPIFB4 immunomodulatory role, while lysates of SARS-CoV-2-infected cells induced an inflammatory response in healthy peripheral blood mononuclear cells in vitro, the co-treatment with recombinant protein (rh) LAV-BPIFB4 resulted in a protective and self-limiting reaction, culminating in the downregulation of CD69 activating-marker for T cells (both TCD4+ and TCD8+) and in MCP-1 reduction. On the contrary, rhLAV-BPIFB4 induced a rapid increase in IL-18 and IL-1b levels, shown largely protective during the early stages of the virus infection. This evidence, along with the ability of rhLAV-BPIFB4 to counteract the cytotoxicity induced by SARS-CoV-2 lysate in selected target cell lines, corroborates BPIFB4 prognostic value and open new therapeutic possibilities in more vulnerable people.


Subject(s)
COVID-19 , Intercellular Signaling Peptides and Proteins , Longevity/immunology , Aged, 80 and over , Biomarkers/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Cell Line , Cytokines/blood , Cytotoxicity, Immunologic/drug effects , Female , Humans , Immunologic Factors/immunology , Immunologic Factors/pharmacology , Inflammation/blood , Inflammation/immunology , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/immunology , Italy/epidemiology , Male , Prognosis , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/immunology , Severity of Illness Index
19.
Transl Med UniSa ; 24(1): 1-12, 2021.
Article in English | MEDLINE | ID: mdl-36447743

ABSTRACT

Recent discoveries have shed light on the participation of the immune system in the physio pathology of the cardiovascular system underpinning the importance of keeping the balance of the first to preserve the latter. Aging, along with other risk factors, can challenge such balance triggering the onset of cardiovascular diseases. Among several mediators ensuring the proper cross-talk between the two systems, bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been shown to have a pivotal role, also by sustaining important signals such as eNOS and PKC-alpha. In addition, the Longevity-associated variant (LAV), which is an haplotype allele in BPIFB4 characterized by 4 missense polymorphisms, enriched in homozygosity in Long Living Individuals (LLIs), has been shown to be efficient, if administered systemically through gene therapy, in improving many aspects of cardiovascular diseases (CVDs). This occurs mainly through a fine immune system remodeling across: 1) a M2 macrophage polarizing effect, 2) a favorable redistribution of the circulating monocyte cell subsets and 3) the reduction of T-cell activation. Furthermore, LAV-BPIFB4 treatment induced a desirable recovery of the inflammatory balance by mitigating the pro-inflammatory factor levels and enhancing the anti-inflammatory boost through a mechanism that is partially dependent on SDF-1/CXCR4 axis. Importantly, the remarkable effects of LAV-BPIFB4 treatment, which translates in increased BPIFB4 circulating levels, mirror what occurs in long-living individuals (LLIs) in whom the high circulating levels of BPIFB4 are protective from age-related and CVDs and emphasize the reason why LLIs are considered a model of successful aging. Here, we review the mechanisms by which LAV-BPIFB4 exerts its immunomodulatory activity in improving the cardiovascular-immune system dialogue that might strengthen its role as a key mediator in CVDs.

20.
Allergy ; 76(5): 1398-1415, 2021 05.
Article in English | MEDLINE | ID: mdl-33043467

ABSTRACT

BACKGROUND: Food allergy (FA) is a growing health problem worldwide. Effective strategies are advocated to limit the disease burden. Human milk (HM) could be considered as a protective factor against FA, but its mechanisms remain unclear. Butyrate is a gut microbiota-derived metabolite able to exert several immunomodulatory functions. We aimed to define the butyrate concentration in HM, and to see whether the butyrate concentration detected in HM is able to modulate the mechanisms of immune tolerance. METHODS: HM butyrate concentration from 109 healthy women was assessed by GS-MS. The effect of HM butyrate on tolerogenic mechanisms was assessed in in vivo and in vitro models. RESULTS: The median butyrate concentration in mature HM was 0.75 mM. This butyrate concentration was responsible for the maximum modulatory effects observed in all experimental models evaluated in this study. Data from mouse model show that in basal condition, butyrate up-regulated the expression of several biomarkers of gut barrier integrity, and of tolerogenic cytokines. Pretreatment with butyrate significantly reduced allergic response in three animal models of FA, with a stimulation of tolerogenic cytokines, inhibition of Th2 cytokines production and a modulation of oxidative stress. Data from human cell models show that butyrate stimulated human beta defensin-3, mucus components and tight junctions expression in human enterocytes, and IL-10, IFN-γ and FoxP3 expression through epigenetic mechanisms in PBMCs from FA children. Furthermore, it promoted the precursors of M2 macrophages, DCs and regulatory T cells. CONCLUSION: The study's findings suggest the importance of butyrate as a pivotal HM compound able to protect against FA.


Subject(s)
Food Hypersensitivity , Gastrointestinal Microbiome , Animals , Butyrates , Food Hypersensitivity/prevention & control , Immune Tolerance , Milk, Human
SELECTION OF CITATIONS
SEARCH DETAIL
...